Meeting Time and Place: Tue. 4:30-7:10pm, CLB 321
Required Textbook: *Computer Architecture A Quantitative Approach, Fifth Edition* by John L. Hennessy and David Patterson, Morgan Kaufmann

Instructor: N. Park
E-mail: npark (at) cs.okstate.edu
Course Home Page: Canvas
Office: MSCS 211
Office Hours: T 2:00-4:00pm
Office Phone: 405-744-7937

TA: Zuqiang Ke
E-mail: zuqiang (at) cs.okstate.edu
Office: TBA
Office Hours: TBA

Prerequisite: CS 3443 (Computer Systems)

Tentative Grading:

- Programming/Homework Assignments: 50%
- Midterm-Exams (3): 10% each (Tentative dates: Feb.4, Mar.10, Apr.21)
- Final Exam (Comprehensive): 20% (TBA)

Tentative Grading Scale: [90-100%] A, [80-89%] B, [70-79%] C, [60-69%] D, [0-59%] F

Course Objective and Description: The objective of this course is to study computer architecture by examining architectural concepts with consideration of use and performance. This course covers a number of issues involved in the design and utilization of high-performance computing systems. This includes: Instruction Set Architecture, Performance Evaluation, Pipeline Microprocessor, Cache and Memory, Multiprocessor, Interconnection Network

Note: Homeworks, term papers and program assignments are due at the beginning of class on the date they are due (unless announced in class otherwise). Late homeworks will not
be accepted. Late program penalty is 10% per calendar day, according to the date and
time on the printout. Only when verifiable extenuating circumstances can be demonstrated
will make-up exams or extended assignment due dates be considered. Verifiable extenuating
circumstances must be reasons beyond control of the students, such as illness or accidental
injury. Poor performance in class is not an extenuating circumstance. Advise your instructor
of the verifiable extenuating circumstances in advance or as soon as possible. In such
situations, the date and nature of the make-up exams and the extended due dates for the
assignments will be decided by the instructor.

Collaboration Policy: Discussion of techniques and ideas covered in class is encouraged.
However, every line of on all assignments must be **your own**.

A statement required by the university: “Care must be taken that exam answers are
not seen by others, that term papers or projects are not plagiarized by others or otherwise
misused by others, etc. Even passive cooperation in a dishonest enterprise is unacceptable.”

- In **programming assignments**, discussion of techniques in a natural language (such
 as English) is allowed, but a discussion in a computer or algorithmic language is
 not allowed. (Computer language discussions and questions are to be limited to the
 language and should not concern the assignment.) Stealing, giving or receiving any
 code, drawings, diagrams, texts or designs is not allowed.

- In **examinations**, no discussion of any kind (except with the instructor) is allowed.
 No access to any type of written material is allowed.

- Students who do not comply with the above described collaboration policy will receive
 a grade of F in the course. Furthermore, the case will be reported to the University
 Officials.

Tentative Course Outline:

1. Introduction to Microprocessor Design
2. Instruction Set Design
3. Pipelined Processor
4. Advanced Pipelining and Instruction-Level Parallelism
5. Memory Systems
6. Storage Systems and I/O
7. Interconnection Networks
8. Multiprocessors