Discrete Mathematics for Computer Science

CS 3653
PS 110
10:30-11:45 a.m. Tuesday, Thursday
Spring 2020

Dr. Douglas R. Heisterkamp
MSCS 508
918-200-9377
doug@cs.okstate.edu

Course Catalog Description: Prerequisite: MATH 2144 with a grade of “C” or better. Theory and applications of discrete mathematical models fundamental to analysis of problems in computer science. Set theory, formal logic and proof techniques, relations and functions, combinatorics and probability, undirected and directed graphs, Boolean algebra, switching logic.

Office Hours: Tuesday, 12:30-1:30 p.m.
 Wednesday, by appointment in Tulsa.
 Thursday, 3:30-4:30 p.m.
 Other times available by appointment.

TA: Kyungho Name, kyunghn@ostatemail.okstate.edu
 Office hours: TBA

Grading: Online Quizzes 5% Grading Scale: for score x in
 Assigned work 30% $90\% \leq x$ A
 Exam 1 20% $80\% \leq x < 90\%$ B
 Exam 2 20% $70\% \leq x < 80\%$ C
 Final Exam 25% $60\% \leq x < 70\%$ D
 $x < 60\%$ F

Dates: Exam 1: February 20
 Spring Break – class does not meet: March 17 and 19
 Exam 2: April 2
 Final Exam: May 7, 10:00-11:50 a.m.

Examinations: During an examination period, no communication of any kind about the exam (except with the instructor or proctor) is allowed.
Assigned work: Programs may be written in any language as long as the TA and the professor are able to build and execute from source code. Examples for class will be in C++ or Python. If in doubt, contact the instructor before the due date to verify that the programming environment is acceptable. If assignments are turned in late, they lose a percentage of their graded point values according to the following schedule:

<table>
<thead>
<tr>
<th>Written and Programming Exercises</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>On time</td>
<td>0%</td>
</tr>
<tr>
<td>One week</td>
<td>25%</td>
</tr>
<tr>
<td>More than one week</td>
<td>100%</td>
</tr>
</tbody>
</table>

Assignments will be due at 11:59 p.m. on Fridays. Assignments may be turned in using the dropbox on canvas. Please use a high resolution black and white scan for hand written exercises. Written exercises may also be turned in during class. If you have not used the departmental server, csx.cs.okstate.edu, in your previous courses, see users names and passwords section of http://www.cs.okstate.edu/loggingon.html.

In class exercises can be conducted in groups of up to three students and are extra credit (worth up to 3% of final grade). Must be present in class to participate in the exercise. No late submission allowed.

Collaboration: Discussion of concepts, ideas, and techniques is allowed. After discussion, each student must write up his/her own solution. Copying another person’s work, in part or whole, is not allowed. Giving another student your work, in part or whole, is considered cheating as well. If you are unsure whether your collaboration is acceptable, speak with the instructor in advance. Any violation of academic integrity would result in a non-droppable grade of zero for that assignment and an additional reduction of one letter grade in the course and a report to the university administration. Major violations will result in a grade of F!.

Disabilities act: If any student feels that he/she has a disability and needs special accommodations of any nature whatsoever, the instructor will work with you and the Office of Disabled Student Services to provide reasonable accommodations to ensure that you have a fair opportunity to perform in this class. Please advise the instructor of such disability and the desired accommodations at some point before, during, or immediately after the first scheduled class period.

Syllabus Attachment: See https://academicaffairs.okstate.edu/sites/default/files/Spring%202020%20Syllabus%20Attachment_1.pdf for Stillwater’s syllabus attachment. The syllabus attachment will also be uploaded to canvas.